Q-

C.U.SHAH UNIVERSITY Summer Examination-2018

Subject Name : Control System Design

Subject Code : 4TE07CSD1			Branch: B.Tech (IC)			
Sem	ester: 7	Date : 28/03/2018	Time : 10:30 To 01:30	Marks: 70		
(((Instruction Draw near 	-	ny other electronic instrument i book are strictly to be obeyed. hecessary) at right places.	is prohibited.		
	Attempt th	ne following questions:				
a)	equal to the a) Zeros	e Reference function then S b) Poles c) Po	e no. ofin forwar et-Point tracking is possible. ole at origin d) Zeros at o	origin		
b)	a) Only inp		(estimator) is/are b) Only output y of the d) Both b & c.			
c)	from the fo	ollowing.	ating the integration of a functi b) Forward-rectangular i d) Both a) & b) are requi			
d)	The proces system bec a) Paramete	s model will always be an i ause of er changes only led time delays only	naccurate representation of the b) Unmodeled dynamic	actual physical		
e)	A computa a) Backwa	tional method of approxima from the following. rd difference rule only	ating the time derivative of a fu b) Forward-rectangula	r integration only		
f)	Roots of th a) Eigen va	 c) Any one of the a) or b). d) Both a) & b) are required. Roots of the characteristic equation are equal to of the system. a) Eigen values only b) Closed loop poles only c) parameters d) Any of a) or b) 				
g)		e no. of state variables, 'r' t hen the order of the matrix b) $r \times n$	c) n × i	be the no. of i/p d) $i \times n$		
h)		e no. of state variables, 'r' b hen the order of the matrix	be the no. of o/p variables & 'i' B is	be the no. of i/p		
	a) n × r	b) $i \times n$	c) n×i	d) i \times i		

	i)	Each horizontal line in S-plane can be represented by a in Z-plane.						
	,	a) line-segment b) circle c) line d) Curve	01					
	j)	What is optimal control?	01					
	k)	What do you mean by compensator?						
	l)	State robust stability criteria for additive and multiplicative perturbation.						
	m)	What do you mean by robust system?						
	n)	What do you mean by mathematical modeling?						
Attempt any four questions from Q-2 to Q-8Q-2Attempt all questions								
Q-2	`		(14) 07					
	a)	Explain the pseudo quantitative feedback theory (Pseudo-QFT) with suitable example						
	b)	Explain the implementation of digital PID controller with necessary steps.						
0.1			(14)					
Q-3	Attempt all questions a) A process is given by $G(s) = \frac{1}{(s+1)^2}$. If cascade controller $G_c(s)=1$ then steady state							
		is 50% and settling time (2% tolerance band) is 3.2 second for a step input. Optimum coefficients of the characteristic equation for ITAE are given by equation $s^3 + 1.75 \omega_n s^2 + 2.15\omega_n^2 s + \omega_n^3$. Design PID controller to obtain an optimum ITAE performance for a step input and a settling time less than 0.5 second.						
	b)	Explain full-order observer design with block diagram.	07					
Q-4	-)	Attempt all questions						
	a)	Discuss the lead compensation technique based on frequency response (bode plot). Enlist the necessary steps to design a lead compensator.	07					
	b)		07					
		by $Y(z) = (z^3 + 2z^2 + 1)/(z^3 - 1.5z^2 + 0.5).$						
Q-5		Attempt all questions	(14)					
Ϋ́	a)	A magnetically suspended steel ball described in state space by $A = \begin{bmatrix} 0 & 1 \\ 3 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.	07					
		Design a state feedback controller K such that system have damping ratio=1 and t =2 sec.						
	b)	Explain full state variable feedback theory with block diagram.	07					
			0,					
Q-6	a)	Attempt all questions Consider the given system $G(s) = \frac{Y(s)}{U(s)} = \frac{1}{s^2}$ and find the feedback gain matrix K to place	(14) 07					
		the closed loop poles at $-1\pm j$.						
	b)	Discuss the system having uncertainty in terms of uncertain coefficients with suitable example.	07					

Q-7	a)	Attempt all questions Write a note on the role of digital computers in control system design and applications.	(14) 07
	b)	Explain the root-locus in digital control system in z-plane with necessary steps to design it.	07
Q-8		Attempt all questions	(14)
	a)	Discuss the lag compensation technique based on root-locus method. Enlist the necessary steps to design a lag compensator.	07
	b)	Explain the difference between lead and lag compensation technique.	07

